r"""
Tolman-Oppenheimer-Volkoff (TOV) equation solver for neutron star structure.
This module provides functions to solve the TOV equations, which describe the
hydrostatic equilibrium of a spherically symmetric, static star in General Relativity.
The implementation follows the approach used in the NMMA code.
**Units:** All calculations are performed in geometric units where :math:`G = c = 1`.
**Reference:** NMMA code https://github.com/nuclear-multimessenger-astronomy/nmma/
"""
from . import utils
import jax.numpy as jnp
from diffrax import diffeqsolve, ODETerm, Dopri5, SaveAt, PIDController
[docs]
def tov_ode(h, y, eos):
r"""
TOV ordinary differential equation system.
This function defines the coupled ODE system for the TOV equations plus
tidal deformability. The system is solved in terms of the enthalpy h as
the independent variable (decreasing from center to surface).
The TOV equations are:
.. math::
\frac{dr}{dh} &= -\frac{r(r-2m)}{m + 4\pi r^3 p} \\
\frac{dm}{dh} &= 4\pi r^2 \varepsilon \frac{dr}{dh} \\
\frac{dH}{dh} &= \beta \frac{dr}{dh} \\
\frac{d\beta}{dh} &= -(C_0 H + C_1 \beta) \frac{dr}{dh}
where H and :math:`\beta` are auxiliary variables for tidal deformability.
Args:
h (float): Enthalpy (independent variable).
y (tuple): State vector (r, m, H, β).
eos (dict): EOS interpolation data.
Returns:
tuple: Derivatives (dr/dh, dm/dh, dH/dh, dβ/dh).
"""
# Extract EOS interpolation arrays
ps = eos["p"]
hs = eos["h"]
es = eos["e"]
dloge_dlogps = eos["dloge_dlogp"]
# Extract current state variables
r, m, H, b = y
e = utils.interp_in_logspace(h, hs, es)
p = utils.interp_in_logspace(h, hs, ps)
dedp = e / p * jnp.interp(h, hs, dloge_dlogps)
# Metric coefficient A = 1/(1-2m/r)
A = 1.0 / (1.0 - 2.0 * m / r)
# Tidal deformability coefficients
C1 = 2.0 / r + A * (2.0 * m / (r * r) + 4.0 * jnp.pi * r * (p - e))
C0 = A * (
-6 / (r * r)
+ 4.0 * jnp.pi * (e + p) * dedp
+ 4.0 * jnp.pi * (5.0 * e + 9.0 * p)
) - jnp.power(2.0 * (m + 4.0 * jnp.pi * r * r * r * p) / (r * (r - 2.0 * m)), 2.0)
# TOV equation derivatives
drdh = -r * (r - 2.0 * m) / (m + 4.0 * jnp.pi * r * r * r * p) # dr/dh
dmdh = 4.0 * jnp.pi * r * r * e * drdh # dm/dh
dHdh = b * drdh # dH/dh
dbdh = -(C0 * H + C1 * b) * drdh # dβ/dh
return drdh, dmdh, dHdh, dbdh
[docs]
def calc_k2(R, M, H, b):
r"""
Calculate the second Love number k₂ for tidal deformability.
The Love number k₂ relates the tidal deformability to the neutron star's
mass and radius. It is computed from the auxiliary variables H and β
obtained from the TOV integration.
The tidal deformability is given by:
.. math::
\Lambda = \frac{2}{3} k_2 C^{-5}
where :math:`C = M/R` is the compactness.
Args:
R (float): Neutron star radius [geometric units].
M (float): Neutron star mass [geometric units].
H (float): Auxiliary tidal variable at surface.
b (float): Auxiliary tidal variable β at surface.
Returns:
float: Second Love number k₂.
"""
y = R * b / H
C = M / R
num = (
(8.0 / 5.0)
* jnp.power(1 - 2 * C, 2.0)
* jnp.power(C, 5.0)
* (2 * C * (y - 1) - y + 2)
)
den = (
2
* C
* (
4 * (y + 1) * jnp.power(C, 4)
+ (6 * y - 4) * jnp.power(C, 3)
+ (26 - 22 * y) * C * C
+ 3 * (5 * y - 8) * C
- 3 * y
+ 6
)
)
den -= (
3
* jnp.power(1 - 2 * C, 2)
* (2 * C * (y - 1) - y + 2)
* jnp.log(1.0 / (1 - 2 * C))
)
return num / den
[docs]
def tov_solver(eos, pc):
r"""
Solve the TOV equations for a given central pressure.
This function integrates the TOV equations from the center of the star
(where r=0, m=0) outward to the surface (where p=0), using the enthalpy
as the integration variable. The integration starts slightly off-center
to avoid singularities.
The solver uses the Dormand-Prince 5th order adaptive method (Dopri5)
with proper error control for numerical stability.
Args:
eos (dict): EOS interpolation data containing:
- **p**: Pressure array [geometric units]
- **h**: Enthalpy array [geometric units]
- **e**: Energy density array [geometric units]
- **dloge_dlogp**: Logarithmic derivative array
pc (float): Central pressure [geometric units].
Returns:
tuple: A tuple containing:
- **M**: Gravitational mass [geometric units]
- **R**: Circumferential radius [geometric units]
- **k2**: Second Love number for tidal deformability
Note:
The integration is performed from center to surface, with the enthalpy
decreasing from h_center to 0. Initial conditions are set using
series expansions valid near the center.
"""
# Extract EOS interpolation arrays
ps = eos["p"]
hs = eos["h"]
es = eos["e"]
dloge_dlogps = eos["dloge_dlogp"]
# Central values and initial conditions
hc = utils.interp_in_logspace(pc, ps, hs)
ec = utils.interp_in_logspace(hc, hs, es)
dedp_c = ec / pc * jnp.interp(hc, hs, dloge_dlogps)
dhdp_c = 1.0 / (ec + pc)
dedh_c = dedp_c / dhdp_c
# Initial values using series expansion near center
dh = -1e-3 * hc
h0 = hc + dh
r0 = jnp.sqrt(3.0 * (-dh) / 2.0 / jnp.pi / (ec + 3.0 * pc))
r0 *= 1.0 - 0.25 * (ec - 3.0 * pc - 0.6 * dedh_c) * (-dh) / (ec + 3.0 * pc)
m0 = 4.0 * jnp.pi * ec * jnp.power(r0, 3.0) / 3.0
m0 *= 1.0 - 0.6 * dedh_c * (-dh) / ec
H0 = r0 * r0
b0 = 2.0 * r0
y0 = (r0, m0, H0, b0)
sol = diffeqsolve(
ODETerm(tov_ode),
Dopri5(scan_kind="bounded"),
t0=h0,
t1=0,
dt0=dh,
y0=y0,
args=eos,
saveat=SaveAt(t1=True),
stepsize_controller=PIDController(rtol=1e-5, atol=1e-6),
)
R = sol.ys[0][-1]
M = sol.ys[1][-1]
H = sol.ys[2][-1]
b = sol.ys[3][-1]
k2 = calc_k2(R, M, H, b)
return M, R, k2